banner
Fr4nk

Hello! Fr4nk

瞎折腾第一名🥇

3DGS訓練類blender數據集

3DGS本身支持對 Blender 數據集的訓練,其主要數據格式為:

<location>
|---images
|   |---<image 0>
|   |---<image 1>
|   |---...
|---transformers_train.json
|---point3d.ply

數據準備#

通常我們自己採集的數據集來自激光掃描裝置,提供了 las 格式的點雲文件、json 格式的相機位姿以及圖片。

首先處理 las 格式的點雲文件,需要將其轉化為二進制的 ply 文件。

然後查看 transformers_train.json 文件,主要是針對性修改 3dgs 代碼文件下 /sence/dataset_readers.py 這個文件。

def readNerfSyntheticInfo(path, white_background, eval, extension=".jpg"):
    print("Reading Training Transforms")
    train_cam_infos = readCamerasFromTransforms(path, "transforms_train.json", white_background, extension)
    #print("Reading Test Transforms")
    #test_cam_infos = readCamerasFromTransforms(path, "transforms_test.json", white_background, extension)
    
    #if not eval:
    #    train_cam_infos.extend(test_cam_infos)
    #    test_cam_infos = []
    test_cam_infos = []
    nerf_normalization = getNerfppNorm(train_cam_infos)

    ply_path = os.path.join(path, "points3d.ply")
    if not os.path.exists(ply_path):
        # Since this data set has no colmap data, we start with random points
        num_pts = 100_000
        print(f"Generating random point cloud ({num_pts})...")
        
        # We create random points inside the bounds of the synthetic Blender scenes
        xyz = np.random.random((num_pts, 3)) * 2.6 - 1.3
        shs = np.random.random((num_pts, 3)) / 255.0
        pcd = BasicPointCloud(points=xyz, colors=SH2RGB(shs), normals=np.zeros((num_pts, 3)))

        storePly(ply_path, xyz, SH2RGB(shs) * 255)
    try:
        pcd = fetchPly(ply_path)
    except:
        pcd = None

    scene_info = SceneInfo(point_cloud=pcd,
                           train_cameras=train_cam_infos,
                           test_cameras=test_cam_infos,
                           nerf_normalization=nerf_normalization,
                           ply_path=ply_path)
    return scene_info

註釋掉了 Test Transforms 相關的部分,不會進行 eval,因此不需要 test。修改了 extension,主要是看自己的圖像輸入格式。

def readCamerasFromTransforms(path, transformsfile, white_background, extension=".jpg"):
    cam_infos = []

    with open(os.path.join(path, transformsfile)) as json_file:
        contents = json.load(json_file)
        fovx = contents["camera_angle_x"]

        frames = contents["frames"]
        for idx, frame in enumerate(frames):
            cam_name = os.path.join(path,"images", frame["file_path"])

            # NeRF 'transform_matrix' is a camera-to-world transform
            c2w = np.array(frame["transform_matrix"])
            # change from OpenGL/Blender camera axes (Y up, Z back) to COLMAP (Y down, Z forward)
            c2w[:3, 1:3] *= -1

            # get the world-to-camera transform and set R, T
            w2c = np.linalg.inv(c2w)
            R = np.transpose(w2c[:3,:3])  # R is stored transposed due to 'glm' in CUDA code
            T = w2c[:3, 3]

            image_path = os.path.join(path, cam_name)
            image_name = Path(cam_name).stem
            image = Image.open(image_path)

            im_data = np.array(image.convert("RGBA"))

            bg = np.array([1,1,1]) if white_background else np.array([0, 0, 0])

            norm_data = im_data / 255.0
            arr = norm_data[:,:,:3] * norm_data[:, :, 3:4] + bg * (1 - norm_data[:, :, 3:4])
            image = Image.fromarray(np.array(arr*255.0, dtype=np.byte), "RGB")

            fovy = focal2fov(fov2focal(fovx, image.size[0]), image.size[1])
            FovY = fovy 
            FovX = fovx

            cam_infos.append(CameraInfo(uid=idx, R=R, T=T, FovY=FovY, FovX=FovX, image=image,
                            image_path=image_path, image_name=image_name, width=image.size[0], height=image.size[1]))
            
    return cam_infos

這裡通常根據自己的 json 文件內容更改,幾個主要需要注意的點是:

  • fovx = contents["camera_angle_x"]

  • cam_name = os.path.join(path,"images", frame["file_path"])

def fetchPly(path):
    plydata = PlyData.read(path)
    vertices = plydata['vertex']
    positions = np.vstack([vertices['x'], vertices['y'], vertices['z']]).T
    colors = np.vstack([vertices['red'], vertices['green'], vertices['blue']]).T / 255.0
    normals = np.vstack([0,0,0]).T
    return BasicPointCloud(points=positions, colors=colors, normals=normals)

這部分是 ply 文件相關的,通常自採集數據集不會有點雲法向量 normals,因此我們根據其 colmap 部分的代碼,也將其設置為 0。

一般這樣改完,代碼就能跑通了,激光點雲結合 GPS 高精度相機位姿,能夠解決 colmap 無法獲取相機位姿的問題。

載入中......
此文章數據所有權由區塊鏈加密技術和智能合約保障僅歸創作者所有。